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Control Objectives
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Control Theory Branches
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The Map of Control Theory
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Paradigm Shift in Control Systems Design

1

Pre-classical and
Primitive Control

Control design for
based
on individual art and
expertise of the individual
designer with no
mathematical background

up to 1935

Paradigm Shift in Control Systems Design

2

Classical Control

Introduction of mathematics
and physical laws in control
systems design for
and the
emergence of PID
controllers

1935-1950

Modern Control

4

Uncertainty Combat

Design of Design based on
model-based controllers for robustness, adaptation and
intelligencee
to address the uncertainty
based on rigorous challenge in
mathematics and principles

of optimality

1950-1960 1960 onward

Data-Driven Control

Data-driven control systems
for the challenge of the
control of

based only on measured
input-output data

2000 onward
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This diagram is inspired by the concepts in: Khaki-Sedigh, Ali. An Introduction to Data-Driven Control Systems. John Wiley & Sons, 2023.
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Classification of Control Methods in Control Theory

Classification of Control Methods in Control Theory - V2.0
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Empirical Modeling based on
Offline Measurement Data
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Classical Control

List of Acronyms

T
Optimal
Control

=
P mming

ACO: Ant Colony Optimization
ADP: i Dynamic Pr
ADRC: Active Disturbance Rejection Control

ANFIS: Adaptive Neuro-Fuzzy Inference System

BELBIC: Brain Emotional Learning Based Intelligent Controller
DeePC: Data-Enabled Predictive Control

ESC: Extremum Seeking Control

GA: Genetic Algorithm

ILC: Iterative Learning Control

LQR: Linear Quadratic Regulator

LQI: Linear Quadratic Integral

LQT: Linear Quadratic Tracking

NL Optimal

LQG: Linear Quadratic Gaussian

MFAC: Model-Free Adaptive Control
MMAC: Multiple Model Adaptive Control
MPC: Model Predictive Control

MRAC: Madel-Reference Adaptive Control
NDI: Nonlinear Dynamic Inversion

NL: Nonlinear

NMPC: Nonlinear Model Predictive Control
NOCP: Nonlinear Optimal Control Problem
NS: Numerical Solution

NSC: Nested Saturation Control

NN: Neural Network

PMP: Pontryagin's Minimum Principle

PSO: Particle Swarm Optimization

QFT: Quantitative Feedback Theory

RCAC: Retrospactive Cost Adaptive Control
RL: Reinforcement Learning

SDRE: State-Dependent Riccati Equation
SMC: Sliding Mode Control

SPSA: Simultaneous Perturbation Stochastic Approximation
STAC: Self-Tuning Adaptive Control

VRFT: Virtual Reference Feedback Tuning

ﬁﬂllllll
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Autonomous Systems v

The continuing goal of control systems is to provide extensive flexibility
and a high level of autonomy.
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Automation vs Autonomy

Automation

The use or introduction of automatic
equipment in a manufacturing or
other process or facility.

How automated a drone is always
comes down to how much automatic
equipment is involved and how
much  manual intervention it
requires. An automated drone
follows orders about destination and
route but cannot make decisions.

Autonomy

Freedom from external control or
influence; independence.

How autonomous a drone is must
always be a measurement of how
independent the platform and its
workflow are. A truly autonomous
drone would decide on destination
and route as well as control in the
air.
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Levels of Autonomy
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Levels of Autonomy

Degree of
Automation

Pilot Control

Obstacle
Avoidance

Description

LEVEL

Shared Control

DRIVER
ASSISTANCE

The vehicle is
equipped with a single
automated system.

LEVEL

Eyes On / Hands off

V=

PARTIAL
AUTOMATION

The vehicle is capable

of steering and
accelerating with

LEVEL

Eyes Off

CONDITIONAL
AUTOMATION

The vehicle can

manage most driving

tasks under specific

LEVEL

Mind Off

HIGH
AUTOMATION

The vehicle performs

all driving tasks
under specific

LEVEL

Full Autfonomous

N N
N,

FULL
AUTOMATION

The vehicle handles
all driving tasks in any
conditions.

conditions. The driver

driver supervision.

must take control

conditions, and taking

over driving is not

Vel
AUTONOMY

Pilot is in control
100% of time

The drone does not
understand or respond
\ to obstacles

Drone crashes
without pilot

@

LOowW
AUTONOMY
Pilotis in control

Detect and warn

Drone can remain in
the air without pilot

(gt

when requested.

required.

r.ga]u

PARTIAL
AUTONOMY

——

Pilot is in control

Detect and warn

Drone can stabilize
and sense walls

€=

1

CONDITIONAL
AUTONOMY

Pilot is a backup
system operating
onsite

Detect and avoid

Drone can fly and
avoid walls

%*%3

HIGH
AUTONOMY
Pilot can monitor

flight remotely

Detect and navigate

Drone can explore
underground and
navigate harsh
conditions

FULL
AUTONOMY
Pilot will set an

objective, but drone

does not need
monitoring

Detect and navigate

Drone can fly
through any
environment under
all conditions
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Control Applications

Biomedical
Engineering

N 4
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Control Applications
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MIT Mini

MIT Blomlme’rc Robotics, Laboratory

Learning Minimum Time Flight
in Cluttered Environments

Robert Penicka, Yunlong Song,
Elia Kaufmann, Davide Scaramuzza

. . ROBOTICS &
University of = PERCEPTION

4 UZH f
Zurich rpg.ifi.uzh.ch

Mahdi Shahrajabian, Fall 2024, AUT



Control Applications v
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